
Vzťah časovej roviny s frekvenčnou, Eulerové vzorce 

Vzťah medzi frekvenčnou rovinou a rovinou časovou umožňuje dva rôzne pohľady na tú 

istú funkciu, avšak jeden pohľad je časovo závislí a druhý je závislí od frekvencie respektíve od 

otáčok. Vzťah medzi frekvenčnou a časovou rovinou sa v matematike využíva napríklad, pri riešení 

diferenciálnych rovníc, kde sa transformuje funkcia z roviny s osami t, f(t) do komplexnej roviny.  

Skrutkovnica 

Pre názorné zobrazenie vzťahu komplexnej roviny s rovinou časovou použijeme krivku 

známu ako skrutkovnica. Skrutkovnica je priestorová krivka a je to jedna zo základných kriviek, je 

definovaná vzťahom: 

𝑓(𝑥, 𝑦, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑟 cos (𝜔𝑡), 𝑟 sin(𝜔𝑡) , 𝑡)         (1 

Kde r vyjadruje polomer závitu. Jej grafická interpretácia je nasledovná: 

 

 

Obrázok 1 Trojrozmerná krivka skrutkovnica 

 



Zmenou uhla pod ktorým sa na krivku pozeráme môžeme získať tri rôzne grafy tej istej 

krivky. 

 

Obrázok 2  Pohľad na skrutkovnicu z rôznych osí. 

Pohľad z osi časovej (obrázok a) funkciu vyobrazuje v komplexnej rovine s reálnou 

a imaginárnou zložkou. Pohľadom z osi reálnej získavame priebeh na obrázku (b. Takýto priebeh 

je opísaný funkciou sínus. Pri pohľade z osi imaginárnej získavame priebeh na obrázku (c, ktorý je 

opísaný funkciou kosínus. Všetky priebehy opisujú správanie priestorovej krivky avšak iba 

v dvojrozmernom priestore. 

Goniometrické vzorce 

 

Obrázok 3 Pohľad na skrutkovnicu v komplexnej rovine 



Odvodenia goniometrických vzorcov budú vychádzať z obr. 3, ktorý predstavuje pohľad na 

komplexnú rovinu z časovej osy. Výraz │𝐴𝑚│predstavuje hodnotu polomeru kružnice 

(amplitúdu). Z obrázku je zrejmé, že hodnoty na reálnej osy sú vyjadrené pomocou funkcie 

kosínus a hodnoty na imaginárnej osy, pomocou funkcie sínus. Grécke písmeno 𝜑 predstavuje uhol 

medzi reálnou a imaginárnou zložkou. S použitím Pytagorovej vety môžeme hodnotu amplitúdy 

určiť ako: 

│𝐴𝑚│ = √(|𝐴𝑚| ∗ sin(𝜔 ∗ 𝑡))2 + (|𝐴𝑚| ∗ cos(𝜔 ∗ 𝑡))2
2

          

= │𝐴𝑚│ ∗ √sin(𝜔 ∗ 𝑡)2 + cos(𝜔 ∗ 𝑡)2
2

           (2  

Vzťah 2) môže ale biť správny iba ak sa výraz s odmocninou rovná 1, teda dostávame 

nasledovnú rovnicu: 

1 = √sin(𝜔 ∗ 𝑡)2 + cos(𝜔 ∗ 𝑡)2
2

         (3 

Z ktorej po umocnení oboch strán na druhú dostávame prvý goniometrický vzorec: 

1 = sin(𝜔 ∗ 𝑡)2 + cos(𝜔 ∗ 𝑡)2          (4 

Pre odvodenie súčtových vzorcov a potom Eulerovej identity budeme potrebovať rozviesť 

funkcie sínus, kosínus a exponenciálnu funkciu 𝑒𝑥𝑖 do Taylorovho radu. Najprv uvedieme 

všeobecný predpis pre rozvoj funkcie do Taylorovho radu: 

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯+

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

Kde 𝑎 predstavujú bod, v ktorom chceme danú funkciu rozložiť do Taylorovho radu. 

Príslušné rozklady funkcií v bode 0 vyzerajú nasledovne: 

𝑇(sin 𝑥 , 0, 𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
+ ⋯+

𝑥(2𝑛+1)

(2𝑛 + 1)
(−1)𝑛 = ∑

𝑥(2𝑛+1)

(2𝑛 + 1)
(−1)𝑛

∞

𝑛=0

       (5 

𝑇(cos 𝑥 , 0, 𝑥) = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯+ (−1)𝑛

𝑥2𝑛

2𝑛!
= ∑(−1)𝑛

𝑥2𝑛

2𝑛!

∞

𝑛=0

                 (6 

𝑇(𝑒𝑖𝑥 , 0, 𝑥) = 1 +
𝑖𝑥

1!
−

𝑥2

2!
−

𝑖𝑥3

3!
+

𝑥4

4!
…+

(𝑥𝑖)𝑛

𝑛!
= ∑

(𝑥𝑖)𝑛

𝑛!

∞

𝑛=0

                                 (7 

Teraz môžeme pristúpiť k odvodeniu súčtových vzorcov: 



sin(𝑥1 + 𝑥2) = ∑(−1)𝑛
(𝑥1 + 𝑥2)

2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

= ∑
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[∑(
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𝜆
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𝜆𝑥2
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                       = ∑(−1)𝑛 [∑
𝑥1

2𝜆𝑥2
2𝑛+1−2𝜆

2𝜆! (2𝑛 + 1 − 2𝜆)!
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𝜆=0
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𝑥1
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                            = [∑(−1)𝑛
∞
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]

= 𝑐𝑜𝑠𝑥1𝑠𝑖𝑛𝑥2 + 𝑐𝑜𝑠𝑥2𝑠𝑖𝑛𝑥1 

Pri odvodení použitý zápis tvaru: 

(
𝑛

𝑘
) 

sa dá rozpísať ako,  



𝑛!

𝑘! (𝑛 − 𝑘)!
 

Vo výsledku dostávame teda vzťah: 

sin(𝑥1 + 𝑥2)  = 𝑐𝑜𝑠𝑥1𝑠𝑖𝑛𝑥2 + 𝑐𝑜𝑠𝑥2𝑠𝑖𝑛𝑥1       (8 

Eulerová identita 

Ďalej si vyjadríme komplexné číslo v goniometrickom tvare ako: 

cos𝑥 + 𝑖 sin 𝑥 = ∑(−1)𝑛
𝑥2𝑛
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= 𝑒𝑥𝑖 

Dostávame teda nasledovný vzťah: 

cos 𝑥 + 𝑖 sin𝑥 = 𝑒𝑥𝑖         (9 

cos(𝜔𝑡 + 𝜑) + 𝑖 sin(𝜔𝑡 + 𝜑) = 𝑒(𝜔𝑡+𝜑)𝑖        (10 

Vzťah (10 lepšie zobrazuje frekvenčnú závislosť výrazov na oboch stranách rovnice. Po 

dosadení, 𝑥 = 𝜋 a úpravách rovnice (9 dostávame  vzťah, ktorý dáva do súvislosti päť často 

využívaných matematických konštánt (1,0, 𝜋, 𝑒, 𝑖) . Vzťah (11 sa nazýva aj Eulerová identita a je 

často považovaný za jeden z najkrajších vzťahov v matematike. 

cos 𝜋 + 𝑖 sin𝜋 = 𝑒𝜋𝑖 = 0 − 1 

𝑒𝜋𝑖 + 1 = 0         (11 
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