Vztah Casovej roviny s frekven¢nou, Eulerové vzorce

Vztah medzi frekven¢nou rovinou a rovinou ¢asovou umoZnuje dva rozne pohlady na td
istu funkciu, avSak jeden pohlad je ¢asovo zavisli a druhy je zavisli od frekvencie respektive od
otacok. Vztah medzi frekvencnou a casovou rovinou sa v matematike vyuziva napriklad, pri rieSeni

diferencidlnych rovnic, kde sa transformuje funkcia z roviny s osami t, f(t) do komplexnej roviny.

Skrutkovnica

Pre nazorné zobrazenie vztahu komplexnej roviny s rovinou ¢asovou pouzijeme krivku
znamu ako skrutkovnica. Skrutkovnica je priestorova krivka a je to jedna zo zadkladnych kriviek, je

definovand vztahom:

f(x,y,t) = (rcos (wt),rsin(wt) , t) (1

Kde r vyjadruje polomer zavitu. Jej graficka interpretacia je nasledovna:

f0x,y,2)=(cos(t),sin(t),t) ——
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Obrdzok 1 Trojrozmernd krivka skrutkovnica



Zmenou uhla pod ktorym sa na krivku pozerame mézeme ziskat tri r6zne grafy tej istej

krivky.
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Obrdzok 2 Pohlad na skrutkovnicu z réznych osi.

Pohlad zosi casovej (obrazok a) funkciu vyobrazuje v komplexnej rovine s realnou
a imaginarnou zlozkou. Pohladom z osi redlnej ziskavame priebeh na obrazku (b. Takyto priebeh
je opisany funkciou sinus. Pri pohlade z osi imaginarnej ziskavame priebeh na obrazku (c, ktory je
opisany funkciou kosinus. VSetky priebehy opisuju spravanie priestorovej krivky avsak iba

v dvojrozmernom priestore.

Goniometrické vzorce

I Am | *cos(w*t)

\f&‘“\ | Am I *sin(w*t)
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Obrdzok 3 Pohlad na skrutkovnicu v komplexnej rovine



Odvodenia goniometrickych vzorcov budd vychadzat z obr. 3, ktory predstavuje pohlad na

komplexni rovinu zcasovej osy. Vyraz |Am | predstavuje hodnotu polomeru KkruZnice
(amplitadu). Z obrazku je zrejmé, Ze hodnoty na realnej osy su vyjadrené pomocou funkcie
kosinus a hodnoty na imaginarnej osy, pomocou funkcie sinus. Grécke pismeno ¢ predstavuje uhol
medzi redlnou a imaginarnou zlozkou. S pouZzitim Pytagorovej vety m6Zeme hodnotu amplitady

urcit’ ako:

| Am | = 2/(TAm[ * sin(w * £))2 + (JAm] * cos(w * £))?

= |Am| x 3/sin(w * t)2 + cos(w * t)? (2

Vztah 2) moZe ale bit spravny iba ak sa vyraz s odmocninou rovna 1, teda dostavame

nasledovnu rovnicu:

1 = 3/sin(w * t)? + cos(w * t)2 3
Z ktorej po umocneni oboch stran na druht dostavame prvy goniometricky vzorec:
1 = sin(w * t)? + cos(w * t)? (4

Pre odvodenie suctovych vzorcov a potom Eulerovej identity budeme potrebovat rozviest
funkcie sinus, kosinus aexponencidlnu funkciu e* do Taylorovho radu. Najprv uvedieme
vSeobecny predpis pre rozvoj funkcie do Taylorovho radu:
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Kde a predstavuju bod, v ktorom chceme danu funkciu rozloZit do Taylorovho radu.

Prislu$né rozklady funkcii v bode 0 vyzeraju nasledovne:
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Teraz m6zeme pristupit k odvodeniu suctovych vzorcov:
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Pri odvodeni pouzity zapis tvaru:

sa da rozpisat ako,



n!

kl!'(n—k)!

Vo vysledku dostavame teda vztah:

sin(x; + x,) = cosx;sinx, + cosx,sinx;

Eulerova identita

(8

Dalej si vyjadrime komplexné ¢&islo v goniometrickom tvare ako:
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Dostavame teda nasledovny vztah:
cosx +isinx =e* (9

cos(wt + @) + isin(wt + ) = e (@t+@)i
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Vztah (10 lepsSie zobrazuje frekven¢nu zavislost vyrazov na oboch stranach rovnice. Po

dosadeni, x = m aupravach rovnice (9 dostiavame vztah, ktory dava do suvislosti pat casto

vyuzivanych matematickych konstant (1,0, 7, e,i) . Vztah (11 sa nazyva aj Eulerova identita a je

Casto povazovany za jeden z najkrajSich vztahov v matematike.
cosm+isinm=e™ =0-1
my1=0 (11
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